Folding and unfolding of gammaTIM monomers and dimers.
نویسندگان
چکیده
Kinetic simulations of the folding and unfolding of triosephosphate isomerase (TIM) from yeast were conducted using a single monomer gammaTIM polypeptide chain that folds as a monomer and two gammaTIM chains that fold to the native dimer structure. The basic protein model used was a minimalist Gō model using the native structure to determine attractive energies in the protein chain. For each simulation type--monomer unfolding, monomer refolding, dimer unfolding, and dimer refolding--thirty simulations were conducted, successfully capturing each reaction in full. Analysis of the simulations demonstrates four main conclusions. First, all four simulation types have a similar "folding order", i.e., they have similar structures in intermediate stages of folding between the unfolded and folded state. Second, despite this similarity, different intermediate stages are more or less populated in the four different simulations, with 1), no intermediates populated in monomer unfolding; 2), two intermediates populated with beta(2)-beta(4) and beta(1)-beta(5) regions folded in monomer refolding; 3), two intermediates populated with beta(2)-beta(3) and beta(2)-beta(4) regions folded in dimer unfolding; and 4), two intermediates populated with beta(1)-beta(5) and beta(1)-beta(5) + beta(6) + beta(7) + beta(8) regions folded in dimer refolding. Third, simulations demonstrate that dimer binding and unbinding can occur early in the folding process before complete monomer-chain folding. Fourth, excellent agreement is found between the simulations and MPAX (misincorporation proton alkyl exchange) experiments. In total, this agreement demonstrates that the computational Gō model is accurate for gammaTIM and that the energy landscape of gammaTIM appears funneled to the native state.
منابع مشابه
Force-clamp spectroscopy of single-protein monomers reveals the individual unfolding and folding pathways of I27 and ubiquitin.
Single-protein force experiments have relied on a molecular fingerprint based on tethering multiple single-protein domains in a polyprotein chain. However, correlations between these domains remain an issue in interpreting force spectroscopy data, particularly during protein folding. Here we first show that force-clamp spectroscopy is a sensitive technique that provides a molecular fingerprint ...
متن کاملThe folding of dimeric cytoplasmic malate dehydrogenase. Equilibrium and kinetic studies.
Porcine heart cytoplasmic malate dehydrogenase (s-MDH) is a dimeric protein (2 x 35 kDa). We have studied equilibrium unfolding and refolding of s-MDH using activity assay, fluorescence, far-UV and near-UV circular dichroism (CD) spectroscopy, hydrophobic probe-1-anilino-8-napthalene sulfonic acid binding, dynamic light scattering, and chromatographic (HPLC) techniques. The unfolding and refold...
متن کاملIdentification of a redox-regulated chaperone network.
We have identified and reconstituted a multicomponent redox-chaperone network that appears to be designed to protect proteins against stress-induced unfolding and to refold proteins when conditions return to normal. The central player is Hsp33, a redox-regulated molecular chaperone. Hsp33, which is activated by disulfide bond formation and subsequent dimerization, works as an efficient chaperon...
متن کاملInfluence of lateral association on forced unfolding of antiparallel spectrin heterodimers.
Protein extensibility appears to be based broadly on conformational changes that can in principle be modulated by protein-protein interactions. Spectrin family proteins, with their extensible three-helix folds, enable evaluation of dimerization effects at the single molecule level by atomic force microscopy. Although some spectrin family members function physiologically only as homodimers (e.g....
متن کاملHuman immunodeficiency virus type 1 and type 2 protease monomers are functionally interchangeable in the dimeric enzymes.
Human immunodeficiency virus type 1 (HIV-1) and HIV-2 proteases are dimers of identical subunits. We made a construct for the expression of recombinant one-chain HIV-2 protease dimer, which, like the previously described one-chain HIV-1 protease dimer, is fully active. The constructs for the one-chain dimers of HIV-1 and HIV-2 proteases were modified to produce hybrid one-chain dimers consistin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 93 7 شماره
صفحات -
تاریخ انتشار 2007